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ÖZET 

Kanat elemanı momentum tekniği, bir pervanenin performans tayininde son derece hızlı, basit ve 

efektif bir yöntemdir. Geleneksel lineer kanat elemanı momentum yöntemi, direncin indüklenmiş 

hücum açısı üzerindeki etkisinin küçük olduğunu kabul eder. Dolayısıyla, kanat açıklığı boyunca 

indüklenmiş hücum açıları küçük kalır. Ancak bu yaklaşımözellikle, yüksek ilerleme sayılarında doğru 

sonuçlar vermez. Lineer olmayan kanat elemanı momentum teoris bu problem çözer. Bu çalışmada, 

DTMB 4381 test pervanesinin açık su performansı kanat elemanı momentum teorisi ve RANS 

yöntemleriyle incelenmiştir. Elde edilen sonuçlar, lineer kanat elemanları yönteminin sonuçları ve 

deneysel verilerle karşılaştırılmıştır. 
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ABSTRACT 

Blade element momentum (BEM) technique is a fast, simple and an efficient method applied to 

measure the performance of propeller. The traditional linear BEM method is based on the assumption 

that the drag has a little effect on the induced angle of attack and thus the induced angle of attack is 

very small at all sections along the blade. However, it is known that this approach creates inaccurate 

results especially on high advanced ratios. The Nonlinear BEM method avoids this inaccuracy arising 

from this negligence. In this paper, the open water performance of benchmark propeller DTMB 4381 

has been investigated by using the nonlinear BEM and RANS methods. The results have been compared 

with the linear BEM method and experimental results.  
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Nomenclature 

BEM : Blade element momentum 

c : Chord length 

CFD : Computational Fluid Dynamics 

CD : Drag coefficient 

CL : Lift coefficient 

CL, : Linear lift curve slope 

CP : Power coefficient 

Cp : Pressure coefficient 

CT : Thrust coefficient 

http://www.gmoshipmar.org/


DTMB : David Taylor Model Basin 

J : Advanced ratio 

Ji : Local induced advance ratio 

N : Number of blades 

Q : Propeller torque 

R  : Propeller radius 

RANS : Reynolds Averaged Navier-Stokes 

T : Propeller thrust 

V : Incoming velocity  

 : Angle of attack 

i : Induced angle 

β : Propeller pitch angle 

λ : Propeller pitch length 

 : Advance angle 

  : Solidarity factor 

  : Angular rotational speed 

Re : Reynolds number 

 
 

1. Introduction 

Prediction of hydrodynamic performance of marine propellers has always been a very challenging 

problem in ship hydrodynamics. CFD (Computational Fluid Dynamics) methods have become very 

available to solve the problems in the hydrodynamics of marine propellers in recent years. Although 

the day by day evolution of numerical methods in CFD has been improved significantly, it is still difficult 

to generate grids to achieve accurate and converged results for rotating propellers and turbine blades. 

The calculations are very sensitive to grids and boundary conditions. For this reason, when the 

difficulty of grid generation, long computational times and high costs are taken into consideration, 

other methods than CFD can be still practical in the preliminary design of marine propellers. 

Fast and simple methods can be still applied in the conceptual and preliminary design phases of marine 

propellers though they have low order accuracy. This usage makes the design process very short. CFD 

and model testing can be used in the later stages of design process. For instance, lifting surface 

methods are very simple, fast and efficient approaches to model the cavitating and optimum 

propellers (Grassi and Brizzolara, 2007, Bal, 2011a and Bal 2011b). Podded propellers were also 

simulated successfully by a lifting surface technique (Bal and Guner, 2009). Blade element momentum 

theory is one of these fast and efficient methods. This theory couples the momentum and blade 

element techniques. In the momentum theory, the actuator disc method is used to represent the 

propeller. It was originally developed by Rankine. On the other hand, blade element momentum theory 

has the concept of dividing propeller blade into separate elements (isolated segments) along the radius 



(Molland et al, 2011 and Sun et al, 2016). This method was proposed originally by Drzewiecki in 1892. 

Drzewiecki drew the velocity triangle for each radial section without including velocity induction as 

reported in (Okulov et al. 2016). The optimum propeller concept was emerged with the development 

of vortex theory. According to this theory, there is a theoretical maximum value of the energy obtained 

from the flow. It has an upper limit, which is called the Betz-Joukowsky limit. In 1935, Glauert combined 

the momentum and blade element theories and developed a conventional blade element momentum 

theory (Glauert, 1935). More recently, by using Wageningen-B propeller series, a combined blade 

element momentum theory was implemented for both lightly and moderately loaded marine 

propellers and the results were with those of three-dimensional RANS solvers (Benini, 2004). All these 

methods assumed small induced angle of attack at sections along the blade radius. However, it is 

known that this classical approach gives inaccurate results especially for high advanced ratios. 

Whitmore and Merrill later developed a correction for nonlinear blade element momentum theory to 

avoid the inaccuracy arising from linear assumption. This method had better representation for 

measured propeller performance (Whitmore and Merrill, 2012). Performance of the standard test 

propeller DTMB4119 was later computed by using blade element momentum theory with Goldstein 

circulation correction and the results by this approach were compared with those of 3D Navier-Stokes 

calculations (Ulgen, 2017). In addition, performance factors of the standard test propeller DTMB4119 

by using Goldstein circulation correction and Ludweig and Ginzel camber correction were computed 

by (Karaalioglu and Bal, 2018) and they compared the results with 3D Navier-Stokes calculations 

(Karaalioglu and Bal, 2018). 

In this study, the open water performance of benchmark propeller DTMB 4381 has been investigated 

by using nonlinear BEM and RANS methods in a way similar to (Soydan, 2018 and Soydan and Bal, 

2018). DTMB 4381 propeller has larger number of blades than DTMB 4119. It is known that if the 

number of blades is increased, BEM methods are not expected to give satisfactory good results due to 

high interaction between blades. Therefore, the results from nonlinear BEM method are compared 

with those of experiments and linear BEM method. 

2. Blade Element Momentum Theory 

Blade element momentum theory couples the momentum approach with blade element method. 

Momentum theory uses an axisymmetric flow approach to balance the inflow and outflow momentum 

across the rotor disk. The flow is assumed to be inviscid, irrotational, and incompressible, and the 

propeller is modeled as an infinitesimally thin disk with a pressure jump across the disk. It also 

considers an infinite number of propeller blades in the stream tube of propeller. Principles of 

conservation of energy and axial momentum can be utilized in the momentum theory (Carlton, 2012). 

The momentum theory, however, does not take the torsional effects into calculations and thus ignores 

tangential effects. Therefore, energy losses are neglected in this method. 

 Blade element theory, on the other hand, defines the forces on the blades of a marine propeller as a 

function of lift and drag coefficients, and the angle of attack of sections. The blade is divided into 

sufficient number of elements along the radius to obtain a converged solution. Hydrodynamic 

interaction between elements is neglected and the forces on the blades are assumed to be determined 

only by the lift and drag characteristics of the sections of the blades. The blade element theory has 

been developed based on the principle of conservation of angular momentum as well as axial 

momentum. Blade element momentum theory has been developed by combining the blade element 

method and momentum theory. In this study, (small angle) analytical solution and nonlinear, large 

angle solution of blade element momentum theory algorithms given in (Whitmore and Merrill, 2012) 



have been applied for simulations of flow around marine propeller. Formulations of both methods are 

given in the following sections for the completeness of the paper. 

2.1. Blade Element Theory 

Velocity and forces acting on a single blade element are shown in Figure 1. Here 𝛽 is the local pitch 

angle. Advance angle is calculated as follows: 
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Here V
 ,   and r  are the free stream velocity, rotation rate of propeller and radial position along 

propeller radius, respectively. Induced angle of attack is defined as: 
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where    is the propeller pitch angle and  is the angle of attack.  

The thrust and torque forces of this blade element can then be written as: 
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Figure 1. Velocity and force diagramme taken from (Whitmore and Merrill, 2012). 

 
Then, these coefficients are integrated to find the total thrust and power coefficient of the propeller 

as follows (McCormick, 1999): 
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Here,  is defined as: 
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R
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The integration limits are taken from propeller root to the propeller tip. For the blade element theory, 

the propeller diameter, number of blades, pitch and chord distribution must be known. The last factor 

required to calculate the differential thrust and power coefficient is the induced angle of attack on 

each radial section. The induced angle of attack is calculated by the momentum theory (Whitmore and 

Merrill, 2012). 

2.2. Momentum Theory 

The momentum theory is illustrated in Figure 2. Flow is assumed to be incompressible, inviscid and 

irrotational. First, Bernoulli’s equation is applied between the inlet surface and the propeller disk. Later 

it is applied between the propeller disk and the outlet surface as follows: 
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Here the differential pressure is defined as, 
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Local differential thrust on the propeller disk can be given as, 
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If the momentum balance is applied across the propeller disc,   

                 ( ) ( ) edT m r V m r V   (12) 

The differential mass flow on the propeller disc is then calculated as follows: 
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Figure 2. Momentum theory taken from (Whitmore and Merrill, 2012). 

 



If equations 12 and 13 are combined, the differential thrust can be written as follows: 

                   2 ( ( ))( )i edT V V r V V rdr      (14) 

Equations 12 and 14 are combined to obtain the following equation: 

            ( ) 2 ( )e iV r V V r    (15) 

Equations 14 and 15 can also be combined to get the following equation: 
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Thus the induced velocity in both dimensional and dimensionless forms can be solved as follows, 

respectively: 

             
2

( )
4 4 2

i

V VdT
V r

rdr
       (17) 

            

2 1
( )

4 2

T
i

dCJ J
J r

x dx
     (18) 

Equations 16 and 17 can also be combined to get a relationship between thrust and power,  
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2.3. Analytical (Linear, Small Angle) Solution to Blade Element Momentum Theory 

Induced velocity as shown in Figure 1 is given as, 
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This equation can also be written as follows. 
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If it is assumed that the drag has little effect on the induced angles, the induced angle is therefore 

small at all sections along the blade (McCormick, 1999):  

       𝛼𝑖 ≪ Ф   (22) 

The differential thrust on the blade element could be expressed as, 
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Equations 16 and 23 can be combined to get the following equation, 
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The closed form solution is as follows, 
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The induced angle is solved for each section and Equations 5 and 6 are then used to calculate the 

propeller thrust and power coefficients. 

2.4. Nonlinear (Large Angle) Solution to Blade Element Momentum Theory 

Analytical BEM method assumes that the induced angle of attack is small at all sections along the blade 

radius and has little effect on drag. However, this approach gives inaccurate results especially for high 

advanced ratios. Nonlinear BEM method avoids this inaccuracy. In this method there is no assumption 

on induced angles of attack. In the nonlinear BEM method, a series of equations is iteratively solved 

until the exact induced angle of attack converges for each blade element. The initial induced angle of 

attack is calculated by analytical method (linear solution). Then, the derivative of thrust coefficient 

with respect to x is solved. This derivative is used to find the induced velocity. Later, the induced 

velocity is used to calculate the new induced angle of attack. The iterative process is defined in the 

following equations: 
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In blade element momentum theory, the lift (CL) and drag (CD) coefficients of the blade sections must 

be determined to calculate the performance factors of the propeller. For this purpose, a program of 

Nonlinear BEM developed in Python 3.6 programming language. It takes these values (lift and drag 

coefficients) from XFOIL program for the Reynolds number of each section. XFOIL is an open source 

FORTRAN code, developed by MIT. It can be used to design and analyze the 

incompressible/compressible viscous flow over an arbitrary airfoil sections particularly in low Reynolds 

numbers. More detailed information can be found in (Url-1, 2018). The flow diagram of nonlinear BEM 

method is also shown in Figure 3. 



 

Figure 3. Large angle solution algorithm of nonlinear BEM method. 

3. RANS Calculations 

The governing equations for RANS (Reynolds Averaged Navier-Stokes) solver are based on the 

conservation of mass (continuity) and the momentum values. The flow is assumed to be time 

independent, three-dimensional, viscous and incompressible (Versteeg and Malalasekera, 2007). The 

continuity equation is given as: 
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and the momentum equation is as follows: 
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Here iU   and 'iu  are the mean velocity and the fluctuation velocity components in the directions of 

the Cartesian coordinates ix , respectively.  P   is the mean pressure,   the density and   the 

kinematic viscosity of the fluid. The well-known k-ε turbulence model is used to model the turbulent 

flow. The Reynolds stress tensor can then be calculated as follows; 
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where, t   is the eddy viscosity, 2 /t V k  . C
 is an empirical constant. k  is the turbulent kinetic 

energy and   is the turbulent dissipation rate. Details for the k    turbulence model can be found in 

(Wilcox, 1993). 

 



3.1. Geometry and Boundary Conditions 

DTMB 4381 is selected as the test propeller since it has 5 blades. It is expected to show that nonlinear 

BEM method gives accurate results for even higher number of blades. If the number of blades is 

increased, the interaction between blades will also increase and the BEM method is not expected to 

provide satisfactorily good results. So this hypothesis is checked out here. The propeller has no skew 

and no rake. Its diameter is 0.3048 meters. DTMB4381 propeller, as given below in Table 1, are designed 

with NACA 66 modified profile and a=0.8 camber line. 3-D model of the propeller is shown in Figure 4. 

 

Table 1. DTMB4381 Propeller Geometry (Brizzolara et al., 2008). 

r/R c/D P/D tmax/c fmax/c 

0.20 0.1740 1.3320 0.0351 0.2494 

0.25 0.2020 1.3380 0.0369 0.1960 

0.30 0.2290 1.3450 0.0368 0.1563 

0.40 0.2750 1.3580 0.0348 0.1069 

0.50 0.3120 1.3360 0.0307 0.0769 

0.60 0.3370 1.2800 0.0245 0.0567 

0.70 0.3470 1.2100 0.0191 0.0421 

0.80 0.3340 1.1370 0.0148 0.0314 

0.90 0.2800 1.0660 0.0123 0.0239 

0.95 0.2100 1.0310 0.0128 0.0229 

1.00 0.0010 0.9950 0.0123 0.0160 

 

 

Figure 4. DTMB 4381 propeller geometry. 

 

Figure 5 shows the computational domains and boundary conditions. To reduce the computational 

time, only one blade is modelled to take the advantage of axial symmetry of the flow and periodic 

bounday condition  is used. The right and left sides of the computational domain have been defined as 

the velocity inlet and pressure outlet, respectively. The propeller and shaft surfaces have been defined 

as no slip wall to impose the kinematic boundary condition. The upper surface has been defined as 

symmetry plane. 



 

Figure 5. Geometry and boundary conditions. 

 

The computational domain consists of unstructured tetrahedral elements. Figure 6 shows the 

unstructured tetrahedral mesh generated on the propeller in open water. 

 

 

Figure 6. Unstructured mesh around propeller. 

3.2. Grid Convergence and Solution Strategy 

Three different mesh have been generated for verification and validation study. Uncertainty analysis 

has been applied with Grid Convergence Index (GCI) as recommended by ITTC for CFD verification (ITTC, 

2011). Grid length refinement has been selected greater than 1.3 as recommended in (Celik et al., 

2008) and (Roache, 1998). The number of elements are given below in Table 2. 

 

Table 2. Number of grids. 

Grid Type Number of Elements 

Course 650,981 

Medium 946,006 

Fine 1,564,694 

 

Advanced coefficient (J) is taken as 0.889 (design point) for Uncertainty analysis and Convergence 

condition (R) has been calculated as 0.571. This means that the solution is converging monotonically.  

The uncertainty value has been calculated as 0.71% and is given in Table 3.  Medium grid has been 

selected to consider the computational time and all analysis have been carried out with medium grid.  



Table 3. Uncertainty value for open water analysis. 

Analysis Set %GCIFINE 

1 2 3 0.71 

 

After verification study, the Thrust Coefficient (KT) of the propeller has been validated with the 

experimental data for J=0.889. The comparison of the CFD results with experimental data is given in 

Table 4. Relative difference between numerical and experimental results have been found as -3.846%.  

Table 4. Comparison of the numerical and experimental results 
 

CFD Experiment Relative Difference (%) 

KT 0.200 0.208  -3.846 

 

The ANSYS Fluent 17.2 program has been used for the RANS solution. As the turbulence model, k    

turbulence model has been used. y + value has been kept between 30-300 (Fluent 17.2 User’s Manual, 

2016).  

The second order upwind scheme has been used for the momentum and turbulence terms, and the 

simple algorithm for velocity pressure interaction has been selected. 

4. Results and Discussion 

Linear and nonlinear BEM methods and experimental tests of DTMB4381 propeller are shown in Figure 

7. Experimental data have been taken from (Brizzolara et al., 2008). As shown in Figure 7, the results 

of nonlinear method agree well with those of experiments, except at low advance coefficients. On the 

other hand, linear method over predicts the thrust and torque coefficients especially at high advanced 

ratios, as expected. For the definitions of KT and KQ, refer to (Carlton, 2012). 

 

Figure 7. Comparison of 𝐾𝑇, 10𝐾𝑄 and 𝜂0 values using analytical and nonlinear BEM solutions with 

experimental data of DTMB 4381. 



RANS solution of DTMB4381 propeller is also shown in Figure 8. Computational results agree very well 

with those of experiments. Figure 9 shows also y+ distribution around DTMB 4381 for J= 1.0. Averaged 

y+ value is around 90. Figure 10 shows on the other hand the pressure distribution around DTMB 4381 

for J=0.889. 

 

Figure 8. 𝐾𝑇, 10𝐾𝑄 and 𝜂0values by both RANS solution and  experiments of DTMB 4381. 

 

        
Figure 9. y+ distribution around DTMB 4381 for J=1.0. 

 

   
Figure 10. cp distribution around DTMB 4381 for J=0.889. 



5. Conclusion 

In this study, the open water performance factors of DTMB 4381 propeller (the standard test propeller) 

have been investigated by using a nonlinear blade element momentum and RANS methods. The results 

have been compared with open water propeller experimental test results. It has been found that the 

nonlinear blade element momentum theory and the RANS method have given very satisfactory results. 

Note that nonlinear BEM method is very fast and practical than RANS method. 

For low advanced ratios, it has been observed that the relative difference between the results of 

experimental data and nonlinear BEM method has increased. This difference at low advanced ratio 

may be caused by the inability to model the stall phenomena under potential flow theory. Given that 

the potential flow theory does not model the stall situation, the CL and CD values of the sections 

required for the BEM method can be obtained by CFD method instead of the XFOIL program, resulting 

in more precise results.  
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